
CS257
Introduction to

Nanocomputing

Coded Computation I
John E Savage

Lect 18 Reliable Computation I CS257 © John E Savage 2

Lecture Outline
Coded Computation: Replace the repetition code with something
more efficient.

First we review work from the 50s and 60s on coded
computation, highlighting some negative results.

Next we look at Dan Spielman’s paper Highly Fault-Tolerant
Parallel Computation Procs 37th Annl IEEE Conf. Foundations
of Computer Science, pp. 154-163, 1996.

Spielman’s approach realizes reliable circuits with unreliable
gates more efficiently than the “von Neumann” method.

Lect 18 Reliable Computation I CS257 © John E Savage 3

Coded Computation
Goal: Reliably compute function gk(x1, x2) = y where
x1, x2 and y are of length k.

Method:
Encode x1, x2. Compute Gn(E(x1),E(x2)) = E(y). x1, x2 and y
are encoded in the same code C (prevents cheating).
Result of computation is z, a noisy version of y.
Decode z to a codeword in C.

The challenge is to choose codes to ensure that z can
be decoded correctly in the presence of errors.

Lect 18 Reliable Computation I CS257 © John E Savage 4

Local Coded Computation
We explore the idea that Gn, like gk, is local, i.e.
operates component-wise on E(x1), E(x2).

[Winograd 62] has shown that when Gn is local and
input and output codes are the same, n ≥ 2e+1 to cope
with e errors (See following.) Can’t beat repetition!

Here the amount of redundancy required to cope with
faults is n/k. As with communication, the “rate” is k/n.

Lect 18 Reliable Computation I CS257 © John E Savage 5

A Negative Result
Let y = gk(x1, x2) = AND(x1, x2). Assume Gn = AND.

E(y) = AND(E(x1), E(x2)) = E(AND(x1, x2))

Note: a ⇒ b if and only if AND(a,b) = a.

If x1 ⇒ x2 (x1i ⇒ x2i for each i), E(x1) ⇒ E(x2). Follows
‘cause AND(x1, x2) = x1 implies AND(E(x1), E(x2)) =E(x1)

Since gk(0k, x2) =0k, E(0k) = AND(E(0k), E(x2)) must be 0n

because 0n implies all E(x). Similarly E(1k) = 1n.

Lect 18 Reliable Computation I CS257 © John E Savage 6

A Negative Result (cont.)
If x1 is all 1s, E(y) = E(x2). If we set x2 to all 0s,
then set k bits to 1 one at a time, some bits in
E(x2) increase from 0 to 1. Each change in x2
generates a new codeword.

To tolerate e errors, at least (2e + 1) 1s must be
added at each step. Thus, n ≥ (2e + 1)k.

Same for OR, n ≥ (2e+1)k. ♦

Lect 18 Reliable Computation I CS257 © John E Savage 7

Non-Local Coded Computation

Coded computation cannot be local without
paying a high price.

Must consider non-local coded computation.

Lect 18 Reliable Computation I CS257 © John E Savage 8

Spielman’s Computational
Model

d-dim hypercube executing normal algorithms
Normal algorithms exchange info between
processors along the same dimension on a step.
Other parallel models can be mapped to
hypercube with poly-log time loss.
Each hypercube node is a processor
Processors exchange info with neighbors and
compute in synchronism.
Each processor has own instruction stream.

Lect 18 Reliable Computation I CS257 © John E Savage 9

Spielman’s Encoding Model

Encodes tuple of processor states (σj) using
a RS code p(x).

Encodes tuple (wj,t) of instructions on tth step
for processors using a RS code q(x).

Lect 18 Reliable Computation I CS257 © John E Savage 10

Spielman’s Implementation of
Computation

The function F(σj, β, wj,t) combining
processor state σj for the jth processor with
neighbor state σs and instruction word wj,t on
tth step is implemented using interpolation
polynomial f(u,v,w).
States encoded with polyn. p(x), permuted
states with p’(x), and instructions with q(x).
Output is f(p(x),p’(x),q(x)) evaluated at x∋F
Output is word in different RS code!

Lect 18 Reliable Computation I CS257 © John E Savage 11

Interpolation Polynomials

A 1D interpolation polynomial

A 2D interpolation polynomial

f(σj, β, wj,t) represented by

