CS257 Introduction to Nanocomputing

Coded Computation I

John E Savage

Lecture Outline

- Coded Computation: Replace the repetition code with something more efficient.
- First we review work from the 50s and 60s on coded computation, highlighting some negative results.
- Next we look at Dan Spielman's <u>paper</u> Highly Fault-Tolerant Parallel Computation Procs 37th Annl IEEE Conf. Foundations of Computer Science, pp. 154-163, 1996.
- Spielman's approach realizes reliable circuits with unreliable gates more efficiently than the "von Neumann" method.

Coded Computation

Goal: Reliably compute function g_k(x₁, x₂) = y where x₁, x₂ and y are of length k.

• Method:

- Encode \mathbf{x}_1 , \mathbf{x}_2 . Compute $G_n(E(\mathbf{x}_1), E(\mathbf{x}_2)) = E(\mathbf{y})$. \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{y} are encoded in the same code C (prevents cheating).
- Result of computation is z, a noisy version of y.
- Decode z to a codeword in C.
- The challenge is to choose codes to ensure that z can be decoded correctly in the presence of errors.

Local Coded Computation

- We explore the idea that G_n, like g_k, is local, i.e. operates component-wise on E(x₁), E(x₂).
- [Winograd 62] has shown that when G_n is local and input and output codes are the same, n ≥ 2e+1 to cope with e errors (See following.) Can't beat repetition!
- Here the amount of redundancy required to cope with faults is n/k. As with communication, the "rate" is k/n.

A Negative Result

Let
$$y = g_k(x_1, x_2) = AND(x_1, x_2)$$
. Assume $G_n = AND$.
 $E(y) = AND(E(x_1), E(x_2)) = E(AND(x_1, x_2))$

Note: $a \Rightarrow b$ if and only if AND(a,b) = a.

If $\mathbf{x}_1 \Rightarrow \mathbf{x}_2$ ($\mathbf{x}_{1i} \Rightarrow \mathbf{x}_{2i}$ for each *i*), $E(\mathbf{x}_1) \Rightarrow E(\mathbf{x}_2)$. Follows 'cause AND($\mathbf{x}_1, \mathbf{x}_2$) = \mathbf{x}_1 implies AND($E(\mathbf{x}_1), E(\mathbf{x}_2)$) = $E(\mathbf{x}_1)$

Since $g_k(0^k, \mathbf{x}_2) = 0^k$, $E(0^k) = AND(E(0^k), E(\mathbf{x}_2))$ must be 0^n because 0^n implies all $E(\mathbf{x})$. Similarly $E(1^k) = 1^n$.

A Negative Result (cont.)

If \mathbf{x}_1 is all 1s, $E(\mathbf{y}) = E(\mathbf{x}_2)$. If we set \mathbf{x}_2 to all 0s, then set k bits to 1 one at a time, some bits in $E(\mathbf{x}_2)$ increase from 0 to 1. Each change in \mathbf{x}_2 generates a new codeword.

To tolerate e errors, at least (2e + 1) 1s must be added at each step. Thus, n ≥ (2e + 1)k.

Same for OR, $n \ge (2e+1)k$.

 Coded computation cannot be local without paying a high price.

Must consider non-local coded computation.

Spielman's Computational Model

- d-dim hypercube executing normal algorithms
 - Normal algorithms exchange info between processors along the same dimension on a step.
 - Other parallel models can be mapped to hypercube with poly-log time loss.
 - Each hypercube node is a processor
 - Processors exchange info with neighbors and compute in synchronism.
 - Each processor has own instruction stream.

Spielman's Encoding Model

- Encodes tuple of processor states (σ_j) using a RS code p(x).
- Encodes tuple $(w_{j,t})$ of instructions on tth step for processors using a RS code q(x).

Spielman's Implementation of Computation

- The function $\Phi(\sigma_j, \beta, w_{j,t})$ combining processor state σ_j for the *j*th processor with neighbor state σ_s and instruction word $w_{j,t}$ on the step is implemented using interpolation polynomial $\phi(u,v,w)$.
- States encoded with polyn. p(x), permuted states with p'(x), and instructions with q(x).
- Output is φ(p(x),p'(x),q(x)) evaluated at x∋F
 Output is word in different RS code!

A 1D interpolation polynomial

$$m(x) = \sum_{i=1}^{|H|} \tau(h_i) \frac{\prod_{j \neq i} (x - h_j)}{\prod_{j \neq i} (h_i - h_j)}$$

A 2D interpolation polynomial

$$m(x) = \sum_{i=1}^{|H|} \sum_{j=1}^{|H|} \tau(h_{i,j}) \frac{\prod_{r \neq i} (x - h_r)}{\prod_{r \neq i} (h_i - h_r)} \frac{\prod_{s \neq j} (y - h_s)}{\prod_{s \neq j} (h_j - h_s)}$$

• $\phi(\sigma_j, \beta, w_{j,t})$ represented by