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Lecture Outline
Coded Computation: Replace the repetition code with something 
more efficient.

First we review work from the 50s and 60s on coded 
computation, highlighting some negative results.

Next we look at Dan Spielman’s paper Highly Fault-Tolerant 
Parallel Computation Procs 37th Annl IEEE Conf. Foundations 
of Computer Science, pp. 154-163, 1996.

Spielman’s approach realizes reliable circuits with unreliable 
gates more efficiently than the “von Neumann” method.
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Coded Computation
Goal: Reliably compute function gk(x1, x2) = y where 
x1, x2 and y are of length k.

Method:
Encode x1, x2. Compute Gn(E(x1),E(x2)) = E(y). x1, x2 and y
are encoded in the same code C (prevents cheating).
Result of computation is z, a noisy version of y. 
Decode z to a codeword in C.

The challenge is to choose codes to ensure that z can 
be decoded correctly in the presence of errors.
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Local Coded Computation
We explore the idea that Gn, like gk, is local, i.e. 
operates component-wise on E(x1), E(x2).

[Winograd 62] has shown that when Gn is local and 
input and output codes are the same, n ≥ 2e+1 to cope 
with e errors (See following.) Can’t beat repetition!

Here the amount of redundancy required to cope with 
faults is n/k. As with communication, the “rate” is k/n.
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A Negative Result
Let y = gk(x1, x2) = AND(x1, x2). Assume Gn = AND.

E(y) = AND(E(x1), E(x2)) = E(AND(x1, x2))

Note: a ⇒ b if and only if AND(a,b) = a.

If x1 ⇒ x2 (x1i ⇒ x2i for each i), E(x1) ⇒ E(x2). Follows 
‘cause AND(x1, x2) = x1 implies AND(E(x1), E(x2)) =E(x1)

Since gk(0k, x2) =0k, E(0k) = AND(E(0k), E(x2)) must be 0n

because 0n implies all E(x). Similarly E(1k) = 1n.
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A Negative Result (cont.)
If x1 is all 1s, E(y) = E(x2). If we set x2 to all 0s, 
then set k bits to 1 one at a time, some bits in 
E(x2) increase from 0 to 1. Each change in x2
generates a new codeword. 

To tolerate e errors, at least (2e + 1) 1s must be 
added at each step. Thus, n ≥ (2e + 1)k.

Same for OR, n ≥ (2e+1)k.  ♦
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Non-Local Coded Computation

Coded computation cannot be local without 
paying a high price.

Must consider non-local coded computation.
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Spielman’s Computational 
Model

d-dim hypercube executing normal algorithms
Normal algorithms exchange info between 
processors along the same dimension on a step.
Other parallel models can be mapped to 
hypercube with poly-log time loss.
Each hypercube node is a processor
Processors exchange info with neighbors and 
compute in synchronism.
Each processor has own instruction stream.
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Spielman’s Encoding Model

Encodes tuple of processor states (σj ) using 
a RS code p(x).

Encodes tuple (wj,t ) of instructions on tth step 
for processors using a RS code q(x).
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Spielman’s Implementation of 
Computation

The function F(σj, β, wj,t) combining 
processor state σj for the jth processor with 
neighbor state σs and instruction word wj,t on 
tth step is implemented using interpolation 
polynomial f(u,v,w).
States encoded with polyn. p(x), permuted 
states with p’(x), and instructions with q(x).
Output is f(p(x),p’(x),q(x)) evaluated at x∋F
Output is word in different RS code!
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Interpolation Polynomials

A 1D interpolation polynomial

A 2D interpolation polynomial

f(σj, β, wj,t) represented by 


