CS257
Introduction to
Nanocomputing

Coded Computation |
John E Savage

Lecture Outline

e Coded Computation: Replace the repetition code with something
more efficient.

e First we review work from the 50s and 60s on coded
computation, highlighting some negative results.

e Next we look at Dan Spielman’s Highly Fault-Tolerant
Parallel Computation Procs 37th Annl IEEE Conf. Foundations
of Computer Science, pp. 154-163, 1996.

e Spielman’s approach realizes reliable circuits with unreliable
gates more efficiently than the “von Neumann” method.

Lect 18 Reliable Computation | CS257 © John E Savage 2

Coded Computation

e Goal: Reliably compute function g, (x4, X,) =y where
X4, X, and y are of length k.

e Method:

Encode x,, x,. Compute G, (E(x,),E(x,)) = E(y). X4, X,and y
are encoded in the same code C (prevents cheating).

Result of computation is z, a noisy version of y.
Decode z to a codeword in C.

e The challenge is to choose codes to ensure that z can
be decoded correctly in the presence of errors.

Lect 18 Reliable Computation | CS257 © John E Savage 3

Local Coded Computation

e \We explore the idea that G,,, like g, is local, i.e.
operates component-wise on E(x,), E(x,).

e [Winograd 62] has shown that when G, is local and
iInput and output codes are the same, n =2 2e+1 to cope
with e errors (See following.) Can’t beat repetition!

e Here the amount of redundancy required to cope with
faults is n/k. As with communication, the “rate” is k/n.

Lect 18 Reliable Computation | CS257 © John E Savage 4

A Negative Result

Let y = g, (X4, X,) = AND(x,4, X,). Assume G, = AND.
E(y) = AND(E(x), E(x;)) = E(AND(x;, X3))

Note: a = b if and only if AND(a,b) = a.

If X, = X, (X4; = X, for each i), E(x,) = E(x,). Follows
‘cause AND(X,, X,) = X, implies AND(E(x,), E(x,)) =E(x,)

Since g, (0%, x,) =0%, E(0k) = AND(E(0¥), E(x,)) must be 0"
because 0" implies all E(x). Similarly E(1%) = 1",

Lect 18 Reliable Computation | CS257 © John E Savage 5

A Negative Result (cont.)

If x, is all 1s, E(y) = E(x,). If we set x, to all Os,
then set k bits to 1 one at a time, some bits in
E(Xx,) increase from O to 1. Each change in x,
generates a new codeword.

To tolerate e errors, at least (2e + 1) 1s must be
added at each step. Thus, n 2 (2e + 1)k.

Same for OR, n = (2e+1)k.

Lect 18 Reliable Computation | CS257 © John E Savage 6

Non-Local Coded Computation

e Coded computation cannot be local without
paying a high price.

e Must consider non-local coded computation.

Lect 18 Reliable Computation | CS257 © John E Savage 7

Spielman’s Computational
Model

e d-dim hypercube executing normal algorithms

Normal algorithms exchange info between
processors along the same dimension on a step.

Other parallel models can be mapped to
hypercube with poly-log time loss.

Each hypercube node is a processor

Processors exchange info with neighbors and
compute in synchronism.

Each processor has own instruction stream.

Lect 18 Reliable Computation | CS257 © John E Savage 8

Spielman’s Encoding Model

e Encodes tuple of processor states (o;) using
a RS code p(x).

e Encodes tuple (w;,) of instructions on tth step
for processors using a RS code q(x).

Lect 18 Reliable Computation | CS257 © John E Savage 9

Spielman’s Implementation of
Computation

e The function ®(o;, 3, w;,;) combining
processor state g; for the jth processor with
neighbor state o 'and instruction word W On
tth step is |mplemented using interpolation

polynomial ¢(u,v,w).

e States encoded with polyn. p(x), permuted
states with p’(x), and instructions with q(x).

e Output is ¢(p(X),p’(X),q(x)) evaluated at x>5F
Output is word in different RS code!

Lect 18 Reliable Computation | CS257 © John E Savage 10

Interpolation Polynomials

e A 1D interpolation polynomial

_ = oy ziCe—hy)
nte) = sl et

e A 2D interpolation polynomial

_ |H| |H] [Lzi(@=hr) 1lg2;(y—hs)
(@) = Nz e T A T (=)

e $(0;, B, w;,) represented by

Lect 18 Reliable Computation | CS257 © John E Savage 11

